声测管用于桥梁桩基检测的预埋管

声测管(SonicLoggingPipe)是现不可少的声波检测管,利用声测管可以检测出一根桩的质量好坏,声测管是灌注桩进行超声检测法时探头进入桩身内部的通道。它是灌注桩超声检测系统的重要组成部分,它在桩内的预埋方式及其在桩的横截面上的布置形式,将直接影响检测结果。因此,需检测的桩应在设计时将声测管的布置和埋置方式标入图纸,在施工时应严格控制埋置的质量,以确保检测工作顺利进行。

选购

声测管材质的选择,以透声率较大、便于安装及费用较低为原则。

声脉冲从发射换能器发出,通过耦合水到达水和声测管管壁的界面,再通过管壁到达声测管管壁与混凝土的界面,穿过混凝土后又需穿过另一声测管的两个界面而到达接收换能器。

因此,声测管形成4个界面,每个界面的声能透过系数可按下式计算:

式中:

——某界面的声能透过系数;

——界面两侧介质的

声阻抗率

发射和接收换能器之间4个界面的总透声系数为

声阻抗率较低,用做声测管具有较大的透声率,通常可用于较小的灌注桩,在大型灌注桩中使用时应慎重,因为大直径桩需灌注大量混凝土,水泥的

水化热

不易发散:鉴于塑料的热膨胀系数与混凝土的相差悬殊,混凝土凝固后

塑料管

因温度下降而产生径向和纵向收缩,有可能使之与混凝土局部脱开而造成空气或水的夹缝,在声通路上又增加了更多反射强烈的界面,容易造成误判。

声测管的直径,通常比径向换能器的直径大l0mm即可,常用规格是内径50-60mm。管子的壁厚对透声率的影响很小,所以,原则上对管壁厚度不作限制,但从节省用钢量的角度而言,管壁只要能承受新浇混凝土的侧压力,则越薄越省。

结构

声测管可直接固定在

钢筋笼

内侧上:固定方式可采用焊接或绑扎,管子之间应基本上保持平行-若检测结果需对各测点混凝土的强度做出评估,则不平行度应控制在1‰以下。钢筋笼放入桩孔时应防止扭曲。

管子一般随钢筋笼分段安装,每段之间的接头可采用反螺纹套筒接口或套管焊接方案,如图8所示:若采用

波纹管

则可利用大一号的波纹管套接,并在套接管的两端用胶布缠绕密封。无论那种接头方案都必须保证在较高的

静水压力

下不漏浆,接口内壁应保持平整,不应有

焊渣

、毛刺等凸出物,以免妨碍探头的自如移动,声测管的底部也应密封,安装完毕后应将上口用木塞堵住,以免浇灌混凝土时落入异物,致使孔道堵塞。

安装

a)钢管的套接;b)波纹管的套接

1-钢筋;2-声测管;3-套接管;4-

箍筋

;5-

密封胶

埋置布置

布置声测管的埋置数量及其在桩的横截面卜的布局应考虑检测的控制面积。通常有如图7所示的布置方式,图中的阴影区为检测的控制面积。

一般桩径不大于0.8m时,沿直径布置两根;桩径大于0.8m且不大于1.6m时,布置3根,呈

等边三角形

;桩径大于1.6m时,布置4根,呈

正方形

用途

声测管的其他用途

声测管除了用作检测通道及取代一部分钢筋截面外,还可作为桩底压浆的管道。试验证明,经桩底浆处理的灌注桩,可大幅度提高其承载力。同时声测管还可作为事故桩缺陷冲洗与压浆处理的管道,这时需采取措施把需压浆的缺陷部位的管道打穿。

超声波透射法检测,对声测管总体的要求是:接头牢靠不脱开,密封不漏浆;管壁平整不打折,平顺无变形;管体竖直不歪斜;管内畅通无异物。

当声测管材料或安装工艺较差时,可能造成漏浆、堵管、断裂、弯曲、下沉、变形等事故的发生,对超声波透射法进行桩基完整性检测产生较大影响,甚至于无法进行

超声波透射法

检测。

案例

基于以上情况,我们通过相应的理论计算和大量的工程实践,高强双

密封液

压声测管。

高强双密封液压声测管在承口端端部设计了两个凸槽,凸槽内配有密封圈,安装时将声测管的插口端插入承口端10cm,然后用专用

液压钳

同时对两个凸槽进行挤压,被挤压部位的管材受力后收缩变形,两个凸槽之间的外层管材深陷入内层管材,从而有效实现了声测管的可靠连接;同时橡胶材质的密封圈在受挤压后变形贴服在两层管材之间,起到了极为良好的双保险密封作用。

高强双密封液压声测管的优点主要是充分考虑到声测管在使用中所涉及的各种要素,从各方面达到国内乃至世界领先的性能。

指标

标准

密封性

连接可靠性

抗扭矩性能

套接长度

内压

外压

行业

标准

1mpa保压1min

4mpa保压1min

接头处能承受3KN的拉拔力

接头处能承受扭力矩N·m

≥8mm

企业

标准

2mpa保压1min

4mpa保压2min

接头处能承受6KN的拉拔力

接头处能承受扭力矩N·m

≥10mm

产品优点

密封性能极佳。

性能相当稳定、出色,有效避免与导管、振捣器等相碰撞。

充分的插入套接,更能保证连接的顺直。

高强双密封液压声测管除了有以上领先的性能以外,还具有另外两大明显的优点和一套严谨的保障措施。

两大优点分别是便利性和经济性。

便利性使用声测管,可以完全避免现场焊接、套丝或滚槽作业,无需电力辅助,只需采用配套的

液压工具

,手动操作即可轻松完成,省时、省力,一次性安装成功。

经济性和常规设计的φ57×3.5mm的钢管相比,可节省钢材2/3以上,材料成本明显降低;作为当下国内操作性最为简便的声测管产品,可在各个环节节省最大的人力成本,并能明显提高工作效率;在各种连接方式的薄壁声测管中,声测管可在现场根据需要进行任意长度的锯切使用,无短管和料头的浪费,实际总成本明显降低。

差异

声测管一般来说有两种规格,一种是直插式的声测管,一种是钳压式的声测管,两者价格差异主要在接头上,其他上面倒是没有多少的差别。一般是6米长,内径是50毫米的钢管。壁厚对应于不同的桩基深度有所不同。

声测管主要的组成

声测管主要有底管,中管以及接头管,防尘盖(封口用的)四部分组成,一根管是6m长,根据桩基的深度可以加入多根中管以及接头管,一般的一根管(6米)管配备一根接头管,而一个桩基配2~4个防尘盖(大多数配3个)。底管是一端封口,一端开口;中管是两端都开口的空心管。

优点

一成本经济:

在较深的桥梁码头高层建筑

钻孔灌注桩

施工中,对于灌柱

桩基检测

要求采用声波透射法检测桩基质量,按照设计要求应该预埋检测管(声测管)。桩径0.8m以下的需埋设两根检测管,两根检测管必须固定在钢筋笼内同一直线上。桩径0.8m-2.0m的需埋设三根检测管,三根检测管必须呈

等腰三角形

固定在钢筋笼内。2.0m以上的需埋设四根检测管,四根检测管必须呈正方形固定在钢筋笼内。常规要求采用外径50-60mm的钢管,壁厚3.5mm左右,施工中采取现场焊接法。这种方法在施工中所需成本高,操作复杂,给现场施工带来极大不便,施工成本只占普通焊管成本1/3左右。大大提高了工作效率,降低了施工成本。

二操作简捷:

因声测管的焊接技术要求很高,需有专业的焊接人员。为保证桩基混凝土的质量,在桩基灌注过程中均有时间限定,采用焊接的检测管在钢筋笼对接过程中,还得焊接检测管,给钻孔灌注增加了施工风险。而我公司生产的声测管在安装过程中只需上管插入下管,然后用简单的工具稍加紧固可。无须焊接,无须电力,无需任何技术,大大节约了施工时间,避免了过长时间的安装给施工带来的风险,大幅提高了工作效率。

三质量可靠:

桩基在混凝土灌柱时对声测管的密封性、抗渗性、抗拉性、抗扭矩、抗压等方面的要求特别严格,生产及安装中稍有不慎将造成堵管、渗漏或管变形,桩基检测将无法完成。现场焊接无法检测管壁、接口及管底的

封头

密封性,因此抗渗漏性能很难保证。而我公司生产的声测管从原料采购就由专人严把质量关,生产前后经过多次检测,产品成型后再需经三道检测工序即初检、气检、水检。确保产品合格率为%,从而保证了桩基质检要求。

四售后服务:

产品一经售出就于贵公司建立了同盟合作关系,产品进入工地后派专业技术人员现场指导,公司并设立24小时响应制,对使用过程中出现的问题都将在最短的时间内给予解决。

五运输及存放:

声测管运输可用汽车、火车、轮船等,装车及卸车过程中宜用纤维

吊装带

并注意应轻吊轻放,上方不可压重物。施工安装过程中应轻拿轻放,成品应放入仓库内或棚内干燥的地方,不要与地面直接接触,声测管下方需垫

枕木

,如果没有室内仓库必须用

苫布

塑料布

等有效物体盖住声测管,避免雨淋生锈影响施工。

堵管处理方法

1、对于既定的检测方案原则上不得更改。

2、“通管”:当声测管堵塞时,施工单位应采取有效措施进行“通管”,可采用下述3种方法:

①用粗长钢筋捅通测管;

②用高压水冲洗清管;

③采用

钻机

配小钻头进行扫孔。

3、当无法“通管”时,按以下原则处理:

①、当为某桥的第一根桩时,必须进行抽芯检测。

②、当为某桥的非第一根桩时,施工单位按附表1的格式填写《变更检测方法申请表》,并经监理、

业主代表

和监督负责人签名同意后,予以实施。

③、若某桥多次出现堵管问题,须适时进行抽芯检测。

4、增加的检测费用由施工单位承担。

5、监理须要求施工单位在申报检测前对声测管进行检查;当需更改检测方案时,提前完善相关手续,避免因声测管检测问题影响施工的顺利推进。

超声波检测

声测管安装好之后,按照

超声波换能器

通道在桩体中的不同的布置方式,超声波透射法基桩检测主要有三种方法:

(一)桩内跨孔透射法

此法是一种较成熟可靠的方法,是超声波透射法检测桩身质量的最主要形式,其方法是在桩内预埋两根或两根以上的声测管,在管中注满清水,把发射、接收换能器分别置于两管道中。检测时超声波由发射换能器出发穿透两管间混凝土后被接收换能器接收,实际有效检测范围为声波脉冲从发射换能器到接收换能器所扫过的面积。根据不同的情况,采用一种或多种测试方法,采集声学参数,根据波形的变化,来判定桩身混凝土强度,判断桩身混凝土质量,跨孔法检测根据两换能器

相对高程

的变化,又可分为平测、斜测、交叉斜测、扇形扫描测等方式,在检测时视实际需要灵活运用。

(二)桩内

单孔透

射法

在某些特殊情况下只有一个孔道可供检测使用,例如在钻孔取芯后,我们需进一步了解芯样周围混凝土质量,作为钻芯检测的补充手段,这时可采用单孔检测法,此时,换能器放置于一个孔中,换能器间用隔声材料隔离(或采用专用的一发双收换能器)。超声波从发射换能器出发经耦合水进入孔壁混凝土表层,并沿混凝土表层滑行一段距离后,再经耦合水分别到达两个接收换能器上,从而测出超声波沿孔壁混凝土传播时的各项声学参数。需要注意的是,运用这一检测方式时,必须运用信号分析技术,排除管中的影响干扰,当孔道中有钢质套管时,由于钢管影响超声波在孔壁混凝土中的绕行,故不能用此法。

(三)桩外孔透射法

当桩的上部结构已施工或桩内没有换能器通道时,可在桩外紧贴桩边的土层中钻一孔作为检测通道,检测时在桩顶面放置一发射功率较大的平面换能器,接收换能器从桩外孔中自上而下慢慢放下,超声波沿桩身混凝土向下传播,并穿过桩与孔之间的土层,通过孔中耦合水进入接收换能器,逐点测出透射超声波的声学参数,根据信号的变化情况大致判定桩身质量。由于超声波在土中衰减很快,这种方法的可测桩长十分有限,且只能判断夹层、断桩、缩颈等。

工艺原理介绍

工艺控制,堵塞应急预案等简述

工程建设领域钻孔灌注桩作为一种重要的基桩形式,其质量直接影响构筑物的安全。超声波法是当前检测

桩身完整性

的最有效最准确的检测方法,而声测管的埋设决定了超声波法检测能否顺利进行,如何加强声测管质量控制也越来越重要。阐述了加强声测管质量控制的措施,以期基桩检测顺利进行,工程质量得到保证。

随着国家基础设施建设投入的扩大、建筑事业的发展,在高层建筑、重型厂房、桥梁、港口、码头、

海上采油平台

、核电站工程以及地震区、软土地区、

湿陷性黄土

地区、膨胀土地区和冻土地区的地基处理中,桩基已成为一种重要的基础形式,得到广泛地应用。而灌注桩具有施工时噪音较小、用钢量少、工序简便等优点,在

桩基施工

中得到日益广泛的应用,尤其是高承载力桩和大直径超深桩或是在复杂地质条件、不利环境条件下成桩,灌注桩是其他桩型无法代替的。但灌注桩成桩质量受地质条件、成桩工艺、机械设备、施工人员、管理水平等诸多因素的影响,较易产生夹泥、断裂、缩颈、

混凝土离析

、桩底沉渣较厚及桩顶混凝土密实度较差等质量缺陷,危及主体结构的正常使用与安全,甚至引发

工程质量事故

。由于钻孔灌注桩施工属隐蔽工程施工,无法从外观对其质量进行检查,其质量直接影响构筑物上部结构的安全。因此,桩基检测工作是整个桩基工程中不可缺少的环节,只有提高桩基检测工作的质量和检测评定结果的可靠性,才能真正地确保桩基工程的质量与安全。

1超声波检测原理

常用的基桩动测方法包括低应变反射波法、高应变

动测法

、超声波法、动测法等。超声波法检测基桩由于检测精度高、不受桩长、桩径条件限制、测试无盲区等优点,在混凝土基桩检测中应用越来越普及。其检测原理是对计划采用超声波法检测桩身质量的基桩,施工时在桩身中埋入声测管,检测时发射换能器和接收换能器分别置于两根管道中,由声测管底部开始,发射探头在某一个声测管中边上升边发射高频信号,该高频信号穿过混凝土被另一个声测管中同步移动的接收换能器所探测。随着探头沿整个桩长提升,依次测取各测点超声脉冲穿过两管道之间的混凝土,通过实测超声波在混凝土介质中传播的声时、波幅和频率等参数的相对变化来检测声测管之间混凝土的缺陷位置及影响程度,判定桩身完整性类别。混凝土是由多种材料组成的多相非匀质体。对于正常的混凝土,声波在其中传播的速度是有一定范围的,当传播路径遇到混凝土有缺陷时,如断裂、裂缝、夹泥和密实度差等,声波要绕过缺陷或在传播速度较慢的介质中通过,声波将发生衰减,造成

传播时间

延长,使.声时增大,计算声速降低,波幅减小,波形畸变,利用超声波在混凝土中传播的这些声学参数的变化,来分析判断桩身混凝土质量。该检测法在桥梁基桩完整性评价中是比较准确可靠的,其检测结果,可对有缺陷的部位实施处理措施时进行指导。

2声测管对检测的影晌

常见检测时声测管会发生以下质量问题:

2.1桩底声测管弯曲

因施工不当,造成桩底声测管向内弯曲,间距变小,使发射与接收换能器不保持平行,超声脉冲声速异常偏高,波幅降低,声速曲线不正常。由于桩底是缺陷易发生部位,根据此类曲线很难判定桩底是否存在缺陷,很可能发生漏判、误判,给工程留下安全隐患。

2.2桩身声测管倾斜或弯曲变形

声测管绑扎不牢或绑扎间距过大,在浇筑混凝土过程中,声测管受混凝土挤压发生倾斜或弯曲变形,管间距离变大或变小,直接影响检测结果的分析判定,甚至无法给出桩身完整性类别,只能采取钻芯或其他可靠的方法进行检测,影响正常的施工。

2.3声测管连接处套管过长

由于

钢套管

过长,焊接质量较好,密封在内部的空气不能排出,声波信号要绕行很长距离或穿过空气层才能被接收到,造成声波信号的严重异常,影响桩身完整性的判定。

2.4声测管管径过大

一般假设换能器位于声测管的中心位置,如果声测管的直径较大,换能器在管内摆动范围较大,使耦合水层延迟增大,对声波传播的时问影响也更大,对检测结果的影响就较大。

3.声测管的材料质量控制

声测管的材料质量控制主要从外观质量和材质要求两方面进行控制。

3.1声测管的外观要求

声测管应顺直,弯曲度不大于5mm/m;声测管两端截面应与其轴线垂直,并应无毛刺;不允许有裂缝、结疤、折叠、分层、搭焊缺陷存在;管内应畅通无异物。

3.2声测管的材质要求

要求有足够的机械强度,保证在灌注混凝土过程中不会变形且与混凝土粘结良好,不致在声测管和混凝土间产生缝隙包裹不佳,影响测试结果。其力学性能、抗弯曲性能、耐压扁性能、密封耐压性能应满足规范要求。

钢薄壁声测管的优点是便于安装,可直接固定在钢筋笼内侧上,固定方式可用电焊或绑扎;钢管刚度较大,埋置后可基本上体质其平行度和平直度。所以一般

混凝土灌注桩

推荐使用钢薄壁声测管。

3.3装卸和贮存要求

声测管声测管在装卸搬运过程中,应采用机械或人工将声测管抬起运送至制定地点,严禁抛掷和滚动,以防声测管变形弯曲。吊装时宜用纤维吊装带并注意轻拿轻放,不能一头着地,以防泥土阻塞声测管。声测管在工地存放时,宜放入仓库或料棚内,以防雨淋生锈。室外堆放时,应存放在干燥的地方,下垫枕木,上方不可压重物,并有遮盖物防雨防潮,存放时间不宜超过一个月。

4声测管的工艺质量控制

4.1声测管的埋置数量

声测管的埋置数量,交通和

建筑规范

略有区别,交通部公路工程基桩动测技术规程规定如表1规定。

4.2声测管的直径

超声波检测放入声测管中的换能器直径一般为30mm左右或更小,规范规定声测管内径比换能器直径宜大10mm~20mm,因此选用声测管宜选用直径40mm~60mm钢管。

4.3声测管的壁厚

声测管的壁厚要求,除能满足工艺性能外,还要确保安全使用,宜符合表2要求。

5

安装质量控制

超声波法检测对声测管总体要求是:接头牢靠不脱开,密封不漏浆;管壁平整不打折,平顺无变形;管体竖直不歪斜;管内畅通无异物。

5.1埋设

声测管埋设深度应埋设至灌注桩的底部,其上端应高于灌注桩顶面mm~mm,同一根桩的声测管外露高度宜相同。

5.2密封

声测管的底部应采用焊接盲盖或钢板来保证密封不漏浆;声测管安装完毕后应将上口加盖或加塞封闭,以免浇灌混凝土时落人异物,致使孔道堵塞。

5.3固定

声测管可直接用点焊或铁丝绑扎的方法固定在钢筋笼内侧上,固定点的间距一般不超过2m,其中声测管底端和接头部位宜设固定点。对于无钢筋笼的部位,声测管可用

钢筋支架

固定。为了保证声测管的相互平行,可以在声测管间点焊三角形钢筋架支撑。

5.4联接

钢筋笼放人桩孔时应防止扭曲,声测管一般随钢筋笼分段安装。将带有底盖的声测管固定在第一节钢筋笼上,其余的暂时固定在制作好的待下的钢筋笼上,下钢筋笼时将声测管的上一节对接好后插上,同时把声测管绑扎在钢筋笼上,依次而做。每段之间的接头可采用反螺纹套筒接口或套管焊接方案,反螺纹套筒接头应采用软性的橡胶密封圈,套管联接可选一段长80mm左右的钢套筒,内径略大于声测管外径,将两根声测管套起来,用电焊将套筒与声测管上下两端焊结起来。无论哪种接头方案都必须保证接头有足够的强度,保证声测管不致受力弯曲脱开;在较高的静水压力下联接部位密实不漏浆,接口内壁应保持平整,不应有焊渣、毛刺等物,以免妨碍换能器的自如移动。若声测管需截断,宜用

切割机

切断,切割后对管口进行打磨消除内外毛刺,不宜以电焊烧断;焊接钢筋时,应避免

焊液

流溅到管体上或接头上。

5.5注水

每埋设一节,均应向声测管内加注清水作为检测用的藕合剂。水不能直接用江水,尤其汛期江水

含泥量

较高,要经过净化处理后才能用来灌声测管,来达到预防声测管底部堵塞的目的。在灌注基桩

水下混凝土

之前,应检查声测管内的水位,如管内的水不满,则应补充灌满。

5.6试探

桩基

混凝土龄期

在14d以后才能进行检测。检测前应将桩头凿至

设计标高

,并用测绳拴一根32mm长约20cm的钢筋,做成吊锤对声测管进行试探是否畅顺,并向管中注满清水。

6声测管堵塞的应急预案

在基桩检测过程中发现,有些些施工单位对基桩声测管保护的重视程度不足,经常出声测管被堵现象,导致检测部门无法按既定的检测方案开展检测工作,工程不能顺利进行。

常见问题

(1)声测管接头或管口、管底密封不严,在施工过程中漏进泥浆或

水泥浆

造成堵管。

(2)声测管在安装、灌注过程中因钢筋扭曲或碰撞使声测管接头错位、变形或管壁变形。出现这种情况主要原因是选用过薄壁的声测管。

(3)

灰岩

地区,冲孔成孔不好,钢筋笼下沉困难时使用非常规手段使声测管变形堵塞。

(4)

破桩头

时由于工人的不注意掉进小混凝土块引起的堵管。

解决方法

声测管变形堵管给检测工作带来了很大的困难,甚至无法进行检测。为此基桩浇灌后检测前发现声测管堵塞时,应采取有效措施进行通管确保超声波检测的顺利进行,通管一般有以下三种方法:用粗长钢筋捅通声测管;用高压水冲洗清管;采用钻机配小钻头进行扫孔。

当堵塞严重无法通管时,必须遵循以下处理原则:当为某桥的第一根桩时,必须进行钻芯检测;当为某桥的非第一根桩时,施工单位申报变更检测方法,使用低应变反射波法或高应变动测法,并经监理、业主代表和质监负责人签名后,予以实施;若某桥多次出现堵管问题,须适时进行钻芯检测。

为什么变色层的长度能够表示目的气体的浓度呢?

首先,声测管厂家在里装有检测试剂(也就是对上面的问题的解释:声测管厂家为什么会呈现颜色变化)让我们已氧气声测管厂家为例,声测管厂家里紧密地填充着检测试剂,检测时,空气被气体采集器吸进声测管厂家。空气中氧气分子与检测试剂反响使试剂从黑色变为白色。

随时间的推进,氧气分子进入检测剂的空隙和检测剂接触,并且越来越深化声测管厂家。这个过程持续推进,一层一层推进,直至没有氧气进入,颜色变化中止。

重要的是,不同的浓度意味着被抽取的空气中的氧气的量不同,当有大量氧气时(浓度较高)氧气分子会前行的很远(变白的区域很长)。但是当只需很少的氧气时(浓度较低),就会很快穿过试剂与之反响而耗尽,这样变白的区域就很短。

因此,声测管厂家变色层的长度和气体的浓度成正比关系,观察变色长度就能检测出空气中目的气体的浓度。

声测管厂家里面装填的检测试剂,比如,二氧化碳声测管厂家里面的白色部分,氧气声测管厂家里面的黑色部分。当被检测的气体与试剂接触。会发作化学反响,惹起颜色变化。也就是说,一旦被检测的气体经过声测管厂家,颜色发作变化就说明气体的存在以及它的浓度。可以作更进一步的解释:

发作颜色变化的真正缘由是声测管厂家里面的检测试剂与气体接触时,发作的化学反响,从而生成了另外一种不同的物质。

例如,当

二氧化碳

声测管厂家里面的白色试剂接触到二氧化碳气体时,发作变化生成了另外一种紫色的物质。当氧气声测管厂家里面的黑色试剂与氧气接触时,发作变化生成了另外一种白色的物质。

当然,会有一些气体声测管厂家和以上不同,变化过程有一些差别。

规格型号

钳压式声测管

的规格型号:

50*1.0-2.5mm

54*1.0-2.5mm

57*1.0-2.5mm

推插式/螺旋式/卡接式/法兰式声测管的规格型号:

50*1.0-3.5mm

54*1.0-3.5mm

57*1.0-3.5mm

套筒焊接式声测管的规格型号:

50*1.5-3.5mm

54*1.5-3.5mm

57*1.5-3.5mm




转载请注明:http://www.aierlanlan.com/tzrz/8079.html